Showing posts with label First Year. Show all posts
Showing posts with label First Year. Show all posts

Thursday 26 August 2010

CENTROID OF COMPLEX GEOMETRIC FIGURES:




So in this articles, we are going to discuss the concepts of centroid for one dimensional as well as two dimensional objects. 

Let's first discuss about 1D and 2D objects, one by one, an 1D object is a line, practically a metallic rod will be considered as a linear, 1D object. Where as any thin plate of negligible thickness can be considered a 2D body. Suppose we have a thin metallic rectangular plate. If it is considered as a 2D rectangular area of b X h.

The concept of centroid has been developed on the basis of resultant of several areas. We know that an area can be represented as the cross product of two vectors, hence it is also an vector. Suppose we have an area A, in a cartesian 2D coordinate system. We just divide the area into n parts, and represent them as a1, a2, a3, ..... an.

Let the elemental areas are at a distance x1, x2, x3, ..... xn, from Y axis and y1, y2, y3, ...yn from X axis.

The total moments produced about Y axis will be equal to the summation of all the individual moments produced by n elemental areas. 


Now moment is a vector quantity and we know vectors of same kind can be added together, therefore, all the n moment vectors can be added to get a single value of Resultant Moment. 

We also know this resultant moment's position vector. Let the resultant moment passes through a point G. The point through which resultant moment passes through is called Center of the Area or Centroid.

How can we find out the point G, whose coordinates are (Xg,Yg)?

As moment of an area also obeys VARIGNON'S THEOREM OF MOMENT, then sum of all the moments produced by individual elemental areas will exactly be equal to the moment produced by the total area, i.e. the resultant of all those elemental areas. Now if all the areas are added to have the resultant area which will pass through the centroid G such that it produces a moment of XgA about Y axis and YgA about X axis.

But Varignon's theorem states us that, for a vector system, resultant vector produces the moment about a point, is exactly equal to the sum of all the moments produced by all elemental areas about the same point and in the same plane. Hence, we can write now that,

Sum(a1x1+ a2x2+ + +anxn) = AXg
we can use summation sign ∑ to represent these equations,
∑aixi = (∑ai)Xg
=> Xg = (∑aixi)/((∑ai)


Sum(a1y1+ a2y2+ + +anyn) = AYg
∑aiyi = (∑ai)Yg
=> Yg = (∑aiyi)/((∑ai)

Algorithm to find out the Centroid G(Xg, Yg) of a Complex Geometric Figure.


Step1:
Take a complex 2D figure like an Area or Lamina.


Step2:
Try to identify the basic figures whose algebraic combination produces our problem figure, whose centroid we shall find out.


Step3:
Choose a coordinate system, and make it as our frame of reference. All the distances and coordinate must be define with respect to our frame of reference.


Step4:
Compute the area (ai), coordinates of their own centroid Gi (xi, yi) for each and every elemental areas. While measuring the centroids, all the measurements will be based on according to our chosen Axes.


Step5:
If any particular area has to subtracted to get the complex figure, the area will be negative, where as any area addition will be positive area.


Step6:
If the Centroid of the complex figure be G(Xg,Yg)then,

=> Xg = (∑aixi)/((∑ai)

=> Yg = (∑aiyi)/((∑ai)


Here G1 is the centroid of the part one where G2 is the centroid of the circular area that has to be removed where as G3 is the centroid of the triangular area that has to be removed also.

If we are asked to find moment of inertia of an area, which is nothing but the "second moment of area" then we shall have to find the centroidal moment of inertia first. Then we shall transfer the Moment of Inertia to another axis ie we shall apply parallel axis theorem to transfer moment of inertia from one axis (here centroidal axis) to another parallel axis.

Monday 9 November 2009


ENGINEERING. MECHANICS:  

Most Common Theoretical Questions

EME - 102; EME - 201


FORCE AND FORCE SYSTEM




Topic: FORCE SYSTEM

1) What is a FORCE SYSTEM? Classify them with examples and diagrams.

Ans: A force system may be defined as a system where more than one force act on the body. It means that whenever multiple forces act on a body, we term the forces as a force system. We can further classify force system into different sub-categories depending upon the nature of forces and the point of application of the forces.

Different types of force system:


(i) COPLANAR FORCES:

If two or more forces rest on a plane, then they are called coplanar forces. There are many ways in which forces can be manipulated. It is often easier to work with a large, complicated system of forces by reducing it an ever decreasing number of smaller problems. This is called the "resolution" of forces or force systems. This is one way to simplify what may otherwise seem to be an impossible system of forces acting on a body. Certain systems of forces are easier to resolve than others. Coplanar force systems have all the forces acting in in one plane. They may be concurrent, parallel, non-concurrent or non-parallel. All of these systems can be resolved by using graphic statics or algebra.


(ii) CONCURRENT FORCES:

A concurrent coplanar force system is a system of two or more forces whose lines of action ALL intersect at a common point. However, all of the individual vectors might not actually be in contact with the common point. These are the most simple force systems to resolve with any one of many graphical or algebraic options. If the line of actions of two or more forces passes through a certain point simultaneously then they are called concurrent forces. concurrent forces may or may not be coplanar.

(iii) LIKE FORCES:

A parallel coplanar force system consists of two or more forces whose lines of action are ALL parallel. This is commonly the situation when simple beams are analyzed under gravity loads. These can be solved graphically, but are combined most easily using algebraic methods. If the lines of action of two or more forces are parallel to each other, they are called parallel forces and if their directions are same, then they are called LIKE FORCES.

(iv) UNLIKE FORCES: If the parallel forces are such that their directions are opposite to each other, then they are termed as "UNLIKE FORCE".


(v) NON COPLANAR FORCES:
The last illustration is of a "non-concurrent and non-parallel system". This consists of a number of vectors that do not meet at a single point and none of them are parallel. These systems are essentially a jumble of forces and take considerable care to resolve.

_________________________________________________________________________________
N.B. Almost any system of known forces can be resolved into a single force called a resultant force or simply a Resultant. The resultant is a representative force which has the same effect on the body as the group of forces it replaces. (A couple is an exception to this) It, as one single force, can represent any number of forces and is very useful when resolving multiple groups of forces. One can progressively resolve pairs or small groups of forces into resultants. Then another resultant of the resultants can be found and so on until all of the forces have been combined into one force. This is one way to save time with the tedious "bookkeeping" involved with a large number of individual forces. Resultants can be determined both graphically and algebraically.The Parallelogram Method and the Triangle Method. It is important to note that for any given system of forces, there is only one resultant.


It is often convenient to decompose a single force into two distinct forces. These forces, when acting together, have the same external effect on a body as the original force. They are known as components. Finding the components of a force can be viewed as the converse of finding a resultant. There are an infinite number of components to any single force. And, the correct choice of the pair to represent a force depends upon the most convenient geometry. For simplicity, the most convenient is often the coordinate axis of a structure.


A force can be represented as a pair of components that correspond with the X and Y axis. These are known as the rectangular components of a force. Rectangular components can be thought of as the two sides of a right angle which are at ninety degrees to each other. The resultant of these components ...


is the hypotenuse of the triangle. The rectangular components for any force can be found with trigonometrical relationships: Fx = Fcosθ, Fy = Fsinθ. There are a few geometric relationships that seem to common in general building practice in North America. These relationships relate to roof pitches, stair pitches, and common slopes or relationships between truss members. Some of these are triangles with sides of ratios of 3-4-5, 1-2-sqrt3, 1-1-sqrt2, 5-12-13 or 8-15-17. Committing the first three to memory will simplify the determination of vector magnitudes when resolving more difficult problems.


When forces are being represented as vectors, it is important to should show a clear distinction between a resultant and its components. The resultant could be shown with color or as a dashed line and the components as solid lines, or vice versa. NEVER represent the resultant in the same graphic way as its components.


Any concurrent set of forces, not in equilibrium, can be put into a state of equilibrium by a single force. This force is called the Equilibrant. It is equal in magnitude, opposite in sense and co-linear with the resultant. When this force is added to the force system, the sum of all of the forces is equal to zero. A non-concurrent or a parallel force system can actually be in equilibrium with respect to all of the forces, but not be in equilibrium with respect to moments.
__________________________________________________________________________________


2) What is STATIC EQUILIBRIUM? 
    What are the conditions of static equilibrium for
            (i) concurrent force system
            (ii) coplanar non concurrent force system.

Ans: A body is said to be in equilibrium when there is no change in position as well as no rotation exist on the body. So to be in equilibrium process, there must not be any kind of motions ie there must not be any kind of translational motion as well as rotational motion.

We also know that to have a linear translational motion we need a net force acting on the object towards the direction of motion, again to induce an any kind of rotational motion, a net moment must exists acting on the body. Further it can be said that any kind of complex motion can be resolved into a translational motion coupled with a rotating motion.

Therefore a body subjected to a force system would be at rest if and only if the net force as well as the net moment on the body be zero. Therefore the general condition of any system to be in static equilibrium we have to satisfy two conditions

(i) Net force on the body must be zero ie, ΣFi = 0;
(ii) Net moment on the body must be zero ie, ΣMi = 0.

Now we can apply these general conditions to different types of Force System.

For concurrent force system total moment about the concurrent point is always zero as all the forces pass through the point, and we know the moment of a force passing through the point about which we shall take moment is always zero. Hence, the conditions of equilibrium for concurrent forces will be  
Net force on the body must be zero ie, ΣFi = 0; and we can resolve it along X axis and along Y axis, ie.  (i) ΣFx = 0; and  (ii) ΣFy = 0.

for coplanar non concurrent force system, the equilibrium conditions are
(i) ΣFx = 0; and  (ii) ΣFy = 0.  (iii)  ΣMi = 0.


 Moment on a plane:

For a force system the total resultant moment about any arbitrary point due to the individual forces are equal to the moment produced by the resultant about the same point. Now if the system is at equilibrium condition, then the resultant force would be zero. Hence, the moment produced by the resultant about any arbitrary point is zero. In case of coplanar & concurrent force system, as the forces are concurrent ie. each of the force passes through a common point. Hence, about that common point total moment of all the forces will be zero.

3) What are different types of joint? discuss them in details.

Answer: The Concepts of Joints. In Engineering terminology any force carrying linear member is called as links. Links can be attached to each other by the fasteners or joints. Hence, we can say to prevent the relative motion between two links completely or partially we use fasteners or joints.



Basically there are three types of joints which we shall discuss and they are named as,
(i) pin/ hinged joints, 
(ii) roller joints and 
(iii) fixed joints.


PIN JOINTS:

They are classified according to the degrees of freedom of the links they would allow. Like a pin or hinge joint is consisted of two links joined by the insertion of a pin at the pivot hole. A pin joint doesn't allow a vertical or horizontal relative velocities between the two links.

For better understanding of the mechanism of pin joint we would like to make a simplest type of pin joints. Suppose we would take two links and make holes at one of the ends of each link. Now if we insert a bolt through the holes of both the links, then what we get is an example of pin/hinge joints.

A pin joint although restricts any kind of horizontal or vertical displacement but they can not restrict rotation about an axis passing through the hole, in clockwise or anti clockwise direction. Hence it provides two reactions one vertical and one horizontal to restrict any kind of movement along that direction.

ROLLER JOINTS: