Showing posts with label centroid. Show all posts
Showing posts with label centroid. Show all posts

Thursday 1 December 2011

SOLUTION OF EME-102; CENTROID





HOW TO FIND THE CENTROID OF A COMPOSITE AREA

(a composite area consists of several straight or curved lines.)

(i) Draw the figure in a coordinate system. Draw the dimensions too. Every dimensions will be measured with respect to origin of the coordinate system


(ii) Divide the composite area into several parts of basic geometric areas. Lebel them as part-1, part-2, part-3, .......part-n. Let the corresponding areas are A1, A2, A3, .... An. Let the centroids are G1(X1,Y1), G2(X2,Y2), G3(X3,Y3), ...... Gn(Xn,Yn).

(iii) Let the centroid of the composite area be G(Xg,Yg). Hence,
Xg = (A1X1 + A2X2 +A3X3)/(A1 + A2 + A3)

Yg = (A1Y1 + A2Y2 +A3Y3)/(A1 + A2 + A3)




 
(a) Suppose we have certain area of magnitude (A) in a coordinate system. The centroid of the area will be at its mid-point. A centroid is denoted by G.

                       In the figure we have a complex geometrical area composed of three basic geometrical areas. A rectangle, a semi circle and a isosceles triangle. Let us denote the centroids as G1, G2, G3 for the given areas in the figure.

We shall have to find the Centroid of the entire area composed of  A1, A2, A3.

At first, the composite line is divided into three parts.


Part -1 : The semi-circle : Let the centroid of the area A1 be G1(X1,Y1)

Area, A1 = (π/2)x(25)² mm² = 981.74 mm²                  
          X1 = { 25 -  (4x25)/(3xπ)} mm = 14.39 mm
          Y1 = 25 mm


Part -2 : The Rectangle : Let the centroid of the A2 be G2(X2,Y2)


Area, A2 = 100 x 50  mm² = 5000 mm²             
          X2 = 25 + (100/2) = 75 mm
          Y2 = 25 mm
Part -3 : The Triangle : Let the centroid of the area Area, A3 be G3(X3,Y3)


Area, A3 = (1/2) x 50 x 50 mm² = 1250 mm²             
          X3 = 25 + 50 + 25 = 100 mm
          Y3 = 50 + (50/3) =  66.67 mm






If the centroid of the composite line be G  (Xg,Yg)
Xg = (∑AiXi)/(∑Ai


    = (A1X1 + A2X2 +A3X3)/(A1 + A2 + A3)
    = (981.74 x 14.39 + 5000 x 75 + 1250 x 100)/( 981.74 + 5000 + 1250)
    = 71.09
     
Yg = (∑AiYi)/(∑Ai


    = (A1Y1 + A2Y2 +A3Y3)/(A1 + A2 + A3)
    = (981.74 x 25 + 5000 x 25 + 1250 x 66.67)/ ( 981.74 + 5000 + 1250)
    = 32.20

SOLUTION OF EME-102; EQUILIBRIUM OF FORCES

EQUILIBRIUM OF FORCES IN 2D

A light string ABCDE whose extremity A is fixed, has weights W1 & W2 attached to it at B & C. It passes round a small smooth pulley at D carrying a weight of 300 N at the free end E as shown in figure. If in the equilibrium position, BC is horizontal and AB & CD make 150° and 120° with BC, find (i) Tensions in the strings and (ii) magnitudes of W1 & W2



Although ABCDE is a single string/rope but still the tensions in the string/rope will be different at different segments like in the segment AB the tensions will be T1 , but in BC segment it will be different as the weight is attached at a fixed point (point B) on the string, hence it will be T2 here and in CD it will be T3  there. As at point D the string is not attached rather passes over a smooth pulley hence the tension in DE and CD will be same ie. T3  again.







To solve for equilibrium of forces in 2D, follow these steps:


1. Draw a free body diagram: Draw a diagram of the object in question and identify all the forces acting on it. This will help you visualize the problem and identify any unknown forces or angles.

2. Break forces into components: Resolve all forces into their x- and y-components. This is done by using trigonometry to determine the horizontal and vertical components of each force.

3. Apply Newton's second law: For the object to be in equilibrium, the sum of the forces in the x-direction and the sum of the forces in the y-direction must be equal to zero. This gives you two equations to solve simultaneously.

4. Solve the equations: Solve the equations for the unknown forces or angles by using algebraic methods. This will give you the values of the unknown forces or angles required for the object to be in equilibrium.

5. Check for consistency: Check that the forces and angles you have calculated are consistent with the problem and the free body diagram. For example, make sure that the direction of the forces makes sense and that the angles are reasonable.

6. Interpret the results: Interpret the results and explain what they mean in the context of the problem. This might involve calculating the tension in a rope, the force required to lift an object, or the angle required for an object to remain stationary.


Monday 28 November 2011

PARALLEL AXIS THEOREM AND IT'S USES IN MOI

Moment Of Inertia of an Area.
MOI or MOMENTS OF INERTIA is a physical quantity which represents the inertia or resistances shown by the body against the tendency to rotate under the action external forces on the body. It is a rotational axis dependent function as its magnitude depends upon our selection of rotational axis. Although for any axis, we can derive the expression for MOI with the help of calculus, but still it is a cumbersome process.


Now suppose we take a different issue. We know MOI of an area about its centroidal axis is easily be obtained by integral calculus, but can we find a general formula by which we can calculate MOI of an area about any axis if we know its CENTROIDAL MOI.

We shall here find that we can indeed derive an expression by which MOI of any area (A) can be calculated about any Axis, if we know its centroidal MOI and the distance of the axis from it's Centroid G.


If IGX be the centroidal moment of inertia of an area (A) about X axis, then we can calculate MOI of the Area about a parallel axis (here X axis passing through the point P) at a distance Ŷ-Y'=Y from the centroid if we know the value of IGX and Y, then IPX will be
IPX = IGX + A.Y2 where Y=Ŷ-Y'


IXX = IOX = IGX + A.Ŷ2
Where IXX is the moment of inertia of the area about the co-ordinate axis parallel to X axis and passing through origin O, hence we can say,

IXX = IOX

 IMPORTANT: The notation of Moment of Inertia

MOI of an area about an axis passing through a point B will be written as IBX



Q: Find the Centroidal Moment of Inertia of the figure given above. Each small division represents 50 mm.

To find out Centroidal MOI

Wednesday 24 August 2011

CENTROIDS OF LINES

CENTROID OF A STRAIGHT LINE


If we take a straight line of length (L), then its midpoint will be at a distance (L/2) from either end of the line. Let us denote the centroid as the point G(Xg,Yg).

Suppose we have a straight line AB of length (L) that makes an angle θ with X axis. Let the coordinate of point A is (Xo,Yo). Let the centroid be at G(Xg,Yg), then

Xg = Xo + (Lcos θ)/2
Yg = Yo + (Lsin θ)/2


                                                                                                                                                             

     Again, suppose the coordinate of B is given instead of point A. Let it is given as B(Xi,Yi). Then, it will be                                                       

Xg = X1 - (Lcos θ)/2
Yg = Y1 - (Lsin θ)/2

For Horizontal lines θ = 0° and for Vertical lines θ = 90°




CENTROID OF A CURVED LINE

The steps to derive the centroid of a quarter circular arc of radius R. 
 
Centroid of a curved line can be derived with the help of calculus.



i) Draw the figure in a X-Y coordinate system. Let the curved line has been represented by a function θ

ii) Take an arbitrary point P(X,Y) on the curve. Join the line OP, where O is the origin of the coordinate system. Let OP has a length L and makes an angle (θ) with X axis. Therefore, we can write

                  
                                   X = Rcosθ ----- (a)
                             Y = Rsinθ ----- (b)


iii) Let another point Q, such that PQ = dL where dL is very very small. Let the angle subtended by (dL) be (). So we can write

                                   dL = Rdθ ------ (c)

                             Xg = (1/L) ∫(XdL)
                                  = (1/L) ∫ Rcosθ.Rdθ
                                  = (1/L).R²  ∫ sinθ.dθ ------- (d)

                             Yg = (1/L) ∫ YdL
                                  = (1/L) ∫ Rsinθ.Rdθ
                                  = (1/L).R²  ∫ sinθ.dθ -------- (e)


CENTROID OF A QUARTER CIRCULAR ARC OF RADIUS R

Suppose we have a quarter circular arc in a co-ordinate system as shown in the figure. Total length of the arc AB = (πR)/2 . We take an arbitrarily small length of the arc CD and denote it as dL.

So,
           dL = Rdθ  ------ (iii)    [ as s=Rθ ]

where R = Radius of the quarter circular arc.
Let the co-ordinate of the point D be D(x,y) where
   
               X = Rcosθ -----(iv) and
            Y = Rsinθ -----(v)

Hence   Xg = (1/L)∫x.dL  ;  here  L = (πR)/2  ;        
                                           X = Rcosθ      
                                          dL = Rdθ
    

             Xg = (2/πR)   0π/2Rcosθ.Rdθ 

     =    (2/πR) R2  0π/2cosθ.dθ

 =      2R/π
   
   Yg = (2/πR)   0π/2Rsinθ.Rdθ 
     
 =      (2/πR) R2  0π/2sinθ.dθ

 =      2R/π


Hence, for a quarter circular arc of radius R will be G(2R/π,2R/π)                                                                

                                                                                      

CENTROID OF A COMPOSITE LINE


In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure.So, a composite line is consisted of several straight or curved lines.


Let a composite line is made of n number of lines, which may straight or curved lines.

STEP-ONE:

Draw the composite line and break it into n number of parts. Let the lengths of these lines are L1, L2,  L3 ........ Ln. Let the centroids of these lines are G1(X1,Y1),G2(X2,Y2), G3(X3,Y3) ........ Gn(Xn,Yn).

Calculate length (Li), and coordinates (Xi,Yi) for each and every parts.
 
Now, if the centroid of the composite line be G(Xg,Yg)

Xg = (∑LiXi)/(∑Li


    => (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
   

Yg = (∑LiYi)/(∑Li)

    => (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
   

Friday 19 August 2011

CENTROID OF A COMPOSITE LINE

In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure. If the coordinate of point A is (5,5), find the centroid of the composite line.


Solution: At first, the composite line is divided into three parts.








Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)


length, L1 = 40 mm;                  


X1 = 4 + (40*cos 600)/2 = 14  
Y1 = 4 + (40*sin 600)/2 = 21.32








Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)


length, L2 = 15 mm; 


X2 = 4 + (40*cos 600) + 15/2 = 31.5 
Y2 = 4 + (40*sin 600) = 38.64




Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)


length, L3 = 20 mm; 

X3 = 4 + (40*cos 600) + 15 = 39 
Y3 = 4 + (40*sin 600) - 20/2 = 28.64



If the centroid of the composite line be G  (Xg,Yg)

Xg = (∑LiXi)/(∑Li



    = (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
    = (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20) 
    = 24.17
     

Yg = (∑LiYi)/(∑Li



    = (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
    = (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20) 
    = 26.74



Wednesday 17 August 2011

CENTROID OF AN AREA





 
CENTROID OF AN AREA

Engineering Mechanics EME-102



Geometrical Center of an area (A) is often termed as Centroid or Center of an Area.

Suppose we have an area A in a certain X-Y coordinate system, we divide the area into n parts and named them as A1, A2, A3, .... An,. Let the coordinates of those tiny elemental areas are as (X1,Y1), (X2,Y2), (X3,Y3) ..... (Xn,Yn).



As area can be represented by a vector, hence, Area A can be treated as the resultant of the tiny elemental vectors A1, A2, A3, .... An... Let the direction of the resultant vector passes through the point G(Xg,Yg) on the plane of the area. The point G(Xg,Yg) is called the CENTROID of the area A. (The direction of any area is along the perpendicular to the area drawn at the centroid of the area).

Like other vectors, an area has a moment about an axis and be represented by the product of the radial distance between the area and the axis and the area itself. So if an elementary area A1 has a coordinate (X1,Y1) it means the area is at a distance X1 from the Y axis and Y1 from the X axis. Therefore the moment produced by A1 about Y axis is X1A1 and about X axis is Y1A1.

 Therefore the summation of all the moments produced by each and every elemental area about Y axis will be ∑AiXi and about X axis will be ∑AiYi.

Again, the resultant area A passes through the point G(Xg,Yg). Therefore the moment produced by the area A about Y axis will be AXg and about X axis will be AYg.

Like other vectors, it will obey the Moment Theorem which states the total moment produced by individual vectors will be exactly equal to the moment produced by the resultant vector about a certain axis.

Therefore,
AXg = A1X1 + A2X2 + A3X3 + ...... + AnXn

and
AYg = A1Y1 + A2Y2 + A3Y3 + ...... + AnYn


           

                 For an area, a centroid G(Xg,Yg) can be defined using calculus by the equations,
Xg = (1/A)x.dA   ------ (i)
Where dA = elemental area and A= total area.
Yg = (1/A)y.dA   ------ (ii)

HOW TO DERIVE THE VALUES OF Xg and Yg FOR BASIC GEOMETRIC FIGURE:

STEPS TO FIND Xg



i) Draw the figure in a Coordinate System.

ii) Draw a thin strip of area of thickness (dx) parallel to Y axis and at a distance (x) from Y axis.

iii) Find the height of the strip. Either the height will be constant or the height is a function of (x), that can be calculated from the equation of the figure.

iv) Calculate the elemental area of the strip, and named as dA. Hence, dA = hdx

v) integrate the expression ∫xdA, but dA = hdx. Therefore, we shall integrate  ∫hxdx over the total area.

vi) Xg = (∫ xdA)/A = (∫ hxdx)/A ; where A = total area = ∫dA = ∫hdx


STEPS TO FIND Yg

i) Draw the figure in a Coordinate System.

ii) Draw a thin strip of area of thickness (dy) parallel to X axis and at a distance (y) from X axis.

iii) Find the length (b) of the strip. Either the length will be constant or the length is a function of (y), that can be calculated from the equation of the figure.

iv) Calculate the elemental area of the strip, and named as dA. Hence, dA = bdy

v) integrate the expression ∫ydA, but dA = bdy. Therefore, we shall integrate ∫bydy over the total area.

vi) Yg = (∫ ydA)/A = (∫bydy)/A





CENTROID OF A COMPOSITE AREA:




HOW TO FIND THE CENTROID OF A COMPOSITE AREA

(a composite area consists of several straight or curved lines.)

(i) Draw the figure in a coordinate system. Draw the dimensions too. Every dimensions will be measured with respect to origin of the coordinate system


(ii) Divide the composite area into several parts of basic geometric areas. Lebel them as part-1, part-2, part-3, .......part-n. Let the corresponding areas are
A1, A2, A3, .... An. Let the centroids are G1(X1,Y1), G2(X2,Y2), G3(X3,Y3), ...... Gn(Xn,Yn).

(iii) Let the centroid of the composite area be G(Xg,Yg). Hence,

Xg =
(A1X1 + A2X2 +A3X3)/(A1 + A2 + A3)

Yg =
(A1Y1 + A2Y2 +A3Y3)/(A1 + A2 + A3)




(a) Suppose we have certain area of magnitude (A) in a coordinate system. The centroid of the area will be at its mid-point. A centroid is denoted by G.
 
                       In the figure we have a complex geometrical area composed of three basic geometrical areas. A rectangle, a semi circle and a isosceles triangle. Let us denote the centroids as G1, G2, G3 for the given areas in the figure.

We shall have to find the Centroid of the entire area composed of  A1, A2, A3

At first, the composite line is divided into three parts.



Part -1 : The semi-circle : Let the centroid of the area A1 be G1(X1,Y1)

Area, A1 = (π/2)x(25)² mm² = 981.74 mm²                  
          X1 = { 25 -  (4x25)/(3xπ)} mm = 14.39 mm
          Y1 = 25 mm

Part -2 : The Rectangle : Let the centroid of the A2 be G2(X2,Y2)

Area, A2 = 100 x 50  mm² = 5000 mm²                 
          X2 = 25 + (100/2) = 75 mm
          Y2 = 25 mm
Part -3 : The Triangle : Let the centroid of the area Area, A3 be G3(X3,Y3)

Area, A3 = (1/2) x 50 x 50 mm² = 1250 mm²                 
          X3 = 25 + 50 + 25 = 100 mm
          Y3 = 50 + (50/3) =  66.67 mm



If the centroid of the composite line be G  (Xg,Yg)
Xg = (∑AiXi)/(∑Ai

    = (A1X1 + A2X2 +A3X3)/(A1 + A2 + A3)
    = (981.74 x 14.39 + 5000 x 75 + 1250 x 100)/( 981.74 + 5000 + 1250)
    = 71.09
     
Yg = (∑AiYi)/(∑Ai

    = (A1Y1 + A2Y2 +A3Y3)/(A1 + A2 + A3)
    = (981.74 x 25 + 5000 x 25 + 1250 x 66.67)/ ( 981.74 + 5000 + 1250)
    = 32.20